
Randomized Simplex Algorithmson Klee-Minty CubeszBernd G�artner� Martin Henk�� G�unter M. Ziegler��AbstractWe investigate the behavior of randomized simplex algorithms on special linearprograms. For this, we use combinatorial models for the Klee-Minty cubes [22] andsimilar linear programs with exponential decreasing paths.The analysis of two most natural randomized pivot rules on the Klee-Minty cubesleads to (nearly) quadratic lower bounds for the complexity of linear programmingwith random pivots. Thus we disprove two bounds (for the expected running timeof the random-edge simplex algorithm on Klee-Minty cubes) conjectured in theliterature.At the same time, we establish quadratic upper bounds for the expected length ofa path for a simplex algorithm with random pivots on the classes of linear programsunder investigation. In contrast to this, we �nd that the average length of anincreasing path in a Klee-Minty cube is exponential when all paths are taken withequal probability.1 IntroductionLinear programming is the problem of minimizing a linear objective function over a poly-hedron P � IRn given by a system of m linear inequalities.Without loss of generality [30] we may assume that the problem is primally and duallynondegenerate, that the feasible region is full-dimensional and bounded, and that theobjective function is given by the last coordinate. In other words, we consider the problemof �nding the \lowest vertex" (minimizing xn) of a simple n-dimensional polytope P � IRnwith at most m facets, where the last coordinate xn is not constant on any edge, and thusthe lowest vertex is unique.In this setting, the (geometric interpretation of the) simplex algorithm proceeds fromsome starting vertex of P along edges in such a way that the objective function decreases,until the unique lowest vertex of P is found. The (theoretical and practical) e�ciency ofthe simplex algorithm [31] depends on a suitable choice of decreasing edges that \quicklyleads to the lowest vertex." Connected to this are two major problems of linear pro-gramming: the diameter problem \Is there a short path to the lowest vertex?", and thezA shorter \extended abstract" version of this paper has appeared in [11].�Supported by the ESPRIT Basic Research Action No. 7141 of the EU (project ALCOM II).��Supported by a grant in the \Gerhard-Hess-Program" of the German Science Foundation (DFG).1



algorithm problem \Is there an algorithm which quickly �nds a (short) path to the lowestvertex?"The diameter problem is closely related to the \Hirsch conjecture" (from 1957) andits variants [8] [20] [34]. Currently there is no counterexample to the \Strong monotoneHirsch conjecture" [34] that there always has to be a decreasing path, from the vertexwhich maximizes xn to the lowest vertex, of length at most m�n. On the other hand, thebest arguments known for upper bounds establish paths whose length is roughly boundedby mlog2 2n [17], see also [34].The algorithm problem includes the quest for a strongly polynomial algorithmfor linear programming. Klee & Minty [22] showed in 1972 that linear programs withexponentially long decreasing paths exist, and that Dantzig's \largest coe�cient" pivotrule [8] can be tricked into selecting such a path. Using variations of the Klee-Mintyconstructions, it has been shown that the simplex algorithm may take an exponentialnumber of steps for virtually every deterministic pivot rule [20] [1]. (A notable exceptionis Zadeh's rule [33] [20], locally minimizing revisits, for which Zadeh's $1,000.{ prize [20,p. 730] has not been collected, yet.)No such evidence exists for some natural randomized pivot rules, among them thefollowing three rules.random-edge: At any nonoptimal vertex x of P , follow one of the decreasing edgesleaving x with equal probability.random-facet: If x admits only one decreasing edge, then take it. Otherwise restrictthe program to a randomly chosen facet containing x. This yields a linear program ofsmaller dimension in which x is nonoptimal, and which can be solved by recursive callto random-facet. Then repeat with the vertex obtained from the recursive call.random-shadow: Start at the unique vertex y 2 P which maximizes xn. Choose arandom unit vector c orthogonal to en. Now take the path from y to the lowestvertex given by fx 2 P : cx � cz for all z 2 P with zn = xng.random-facet is a randomized version, due to Kalai [16], of Bland's procedure A[3], which assumes that the facets are numbered, and always restricts to the facet withthe smallest index. Interestingly enough, on an n-dimensional linear program with m =n+k inequalities, the maximum expected number of steps performed by random-facetis bounded by O(neO(pk logn)), which leads to a remarkable subexponential bound if k issmall, see Kalai [16]. (Matou�sek, Sharir & Welzl [25] prove a good bound if k is large, ina very similar dual setting [13].)The random-shadow rule is a randomized version of Borgwardt's shadow vertexalgorithm [4] (also known as the Gass-Saaty rule [21]), for which the auxiliaryfunction c is deterministically obtained, depending on the starting vertex. Borgwardt [4]has successfully analyzed this algorithm under the assumption that P is random in asuitable model (where the secondary objective function c can be �xed arbitrarily), andobtained polynomial upper bounds for the expected number of simplex steps.None of the available evidence contradicts the possibility that the expected runningtime of all three randomized algorithms we consider is bounded from above by a poly-nomial, even a quadratic function, in n and m. (But see [6].) In this connection, we2



report investigations on the performance of such algorithms on in�nite families of \testproblems": speci�c linear programs which have decreasing paths of exponential length.It is not generally believed that polynomial upper bounds can be achieved; it is equallyconceivable that subexponential bounds such as those by Kalai [16] are essentially bestpossible. An interesting open problem in this context is to �nd linear programs on whichthe algorithms in [16] and [25] actually behave superpolynomially; Matou�sek [24] hasconstructed a class of abstract optimization problems | more general than linear pro-grams | for which the subexponential analysis is tight. For all actual linear programs inMatou�sek's class, however, a polynomial (in fact quadratic) upper bound holds [9].In this paper we concentrate on the analysis of the \Klee-Minty cubes," see Section 2.These are very interesting linear programs whose polytope is a deformed n-cube, but forwhich some pivot rules follow a path through all the vertices and thus need an exponentialnumber of steps.Our main results are quadratic, respectively nearly quadratic, lower bounds for theexpected number of steps taken by the random-facet and the random-edge simplexalgorithms. For the random-edge rule this seems to be the �rst superlinear bound.Speci�cally, our analysis of random pivots on the Klee-Minty cubes yields the followingtwo theorems.Theorem 1. The random-facet simplex algorithm on the n-dimensional Klee-Mintycube, started at the vertex x \opposite" (on the n-cube) to the optimal vertex, takes aquadratic expected number of steps Fn(x):Fn(x) = n+ 2 nXk=1 (�1)k+1k + 2 �n� k2 � � ��4 � 12�n2:Moreover, for a random starting vertex the expected number of steps isFn := 12n Xx Fn(x) = n2 + 3n8 :We will see that one gets a linear lower bound and a quadratic upper bound Fn(x) � n2+3n4for the expected number of steps from an arbitrary starting vertex x. Furthermore, thereare starting points in the upper facet for which the random-facet rule will take onlylinearly many steps. The fact that for some starting vertices the expected number of stepsis quadratic follows from an explicit formula for the expectation value, given in Section 2,or from the bound for a random starting vertex.A result very similar to Theorem 1, in the setting of dual simplex algorithms, wasearlier obtained by Matou�sek [24], who analyzed the behavior of the Matou�sek-Sharir-Welzl dual simplex algorithm on a special class of linear programs.Similarly, for random-edge one gets an upper bound En(x) � �n+12 � for the ex-pected number of steps starting at any vertex x of the n-dimensional Klee-Minty cube,see Section 2. This was �rst observed by Kelly [18], see also [32].
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Theorem 2. The expected number En of steps that the random-edge rule will take,starting at a random vertex on the n-dimensional Klee-Minty cube, is bounded byn24(Hn+1 � 1) � En � �n+ 12 �;where Hn = 1 + 1=2 + : : :+ 1=n is the n-th harmonic number.The superlinear lower bound requires substantially harder work, see Section 3. Itimplies that there is a vertex x with En(x) = 
(n2= logn), but compared to the case ofrandom-facet we are not able to show this bound for a speci�c starting vertex, e.g. thetop vertex.Our proof is based on a combinatorial model for the Klee-Minty cubes, which describesthe random-edge algorithm as a random walk on an acyclic directed graph, see Section 2.(This model was �rst, it seems, derived by Avis & Chv�atal [2].)The combinatorial model also makes it possible to do simulation experiments. Ourtests in the range n � 1; 000 suggested that the O(n2) upper bound is close to the truth,although the constant 1=2 derived from Theorem 2 is an overestimate. Motivated by thisobservation, we show in Section 3 that one can improve on the constant.Also, it seems that a (nearly) quadratic lower bound is valid also if the starting vertexis chosen to be the top vertex of the program, but as mentioned above, our method doesnot prove this.Still, our result contradicts Exercise 8.10* in [29, p. 188], where it is claimed thatEn(x) = O(n). It also disproves a conjecture of Kelly [18] that En(x) = O(n(logn)2) forall starting vertices x.In contrast to these results, we show in Section 4 that the average length �n of adecreasing path from the highest to the lowest vertex in the n-dimensional Klee-Mintycube | taking all paths with equal probability | satis�es �n > (1 + 1=p5)n�1: it isexponential. Thus, the \average" path is exponentially long, but the random-edge andrandom-facet pivot rules take the long paths with low probability.Another conjecture of Kelly [18], about the \worst starting vertex" for the randomedge algorithm, also turned out to be false. Kelly had conjectured that the expectednumber of random-edge pivots is maximal if the starting vertex is the vertex x =(1; 1; : : : ; 1; 1)t | with 0/1-coordinates associated to the vertices of the Klee-Minty inthe standard way reviewed below | that is diametrically opposite to the lowest vertex.We found by explicit computation of expectation values (in rational arithmetic, usingREDUCE) that the smallest dimension in which this fails is n = 18. Here one hasE(x0) � 54:547655 > E(x) � 54:547444for the vertex x0 = (0; 1; : : : ; 1; 1)t, which is adjacent to the vertex x. Floating-pointcomputations (with rounding errors) up to dimension n = 24 indicate that one has thise�ect in even dimensions n � 18, while x seems to be the worst starting vertex in all odddimensions.The random-shadow algorithm has not yet been analyzed on special programs.Murty [28] and Goldfarb [12] have constructed variants of the Klee-Minty cubes for whichthe deterministic shadow vertex algorithm takes an exponential number of steps.4



There is hope for a successful analysis since Borgwardt's work [4] shows that methods ofintegral geometry can be very powerful when applied in this context.Besides the Klee-Minty cubes and their variants, there are other natural classes of \testproblems" for (randomized) linear programming algorithms. They include the deformedproducts of Klee & Minty [22], for which a combinatorial model is produced in Section 5.Also there is a natural model on polars of cyclic polytopes, for which the actual programhas not been constructed, yet. This relates to the unsolved \upper bound problem forlinear programs."2 Combinatorial ModelsThe Klee-Minty cubes [22] [29] are the polytopes of the linear programs in IRn withm = 2nfacets given by min xn :0 �x1� 1;"xi�1 �xi� 1� "xi�1for 2 � i � n and 0 < " < 1=2. Our illustration shows the 3-dimensional Klee-Minty cubefor " = 1=3.
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1Figure 1: Klee-Minty cube for n = 3; " = 1=3Considering the geometry in the limit " ! 0, one sees that the feasible region is a(slightly) deformed unit cube. Thus the feasible vertices of the program are in bijectionwith the set f0; 1gn of all 0=1-vectors of length n, where we obtain the 0=1-vector forany vertex by rounding the coordinates. Two vertices are adjacent if the corresponding0=1-vectors di�er in exactly one coordinate. (The identi�cation of f0; 1g with GF (2) willturn out useful in the next section, where linear algebra over GF (2) is a key tool in ourapproach to lower bounds.) 5



In the following, we identify the vertices of the Klee-Minty cubes with the correspond-ing 0=1-vectors. Since the simplex algorithm proceeds along decreasing edges, we haveto describe the edge orientations. We claim that if x; x0 2 f0; 1gn di�er in their i-thcomponent, then the corresponding edge is directed from x to x0 if and only if the sumxi + xi+1 + : : : + xn is odd. We write x ! x0 in this situation. To prove the claim, we�rst note that at a vertex, every coordinate of the program either matches its lower or itsupper bound, therefore the value of the n-th coordinate at the vertex (its height) can bewritten as a linear expression in the i-th coordinate, the latter appearing with sign(�1)xi+1+:::+xnin this expression. Consequently, the height gets smaller by going from x to x0 if and onlyif either the i-th coordinate gets smaller (i.e. xi = 1 in the corresponding vector) andxi+1 + : : :+ xn is even, or the i-th coordinate gets larger (i.e. xi = 0) and xi+1 + : : :+ xnis odd. This in turn is equivalent to xi + xi+1 + : : :+ xn being odd.This completes the description of the combinatorial model: a directed, acyclic graphwith 2n vertices, n2n�1 directed arcs, and a unique source and sink. It can be used as acombinatorial model for the linear program.The random-edge algorithmmoves on the digraph of the Klee-Minty cube by leavingthe current vertex, using one of the outgoing edges with equal probability, until it reachesthe unique sink in the digraph. For example, a legal sequence of steps for n = 3, startingat the highest vertex and ending at the lowest, is given by0@ 001 1A �! 0@ 101 1A �! 0@ 100 1A �! 0@ 000 1A :Here any coordinate that can be ipped is typeset bold: from this one can read o� thatthe �rst step is taken with probability p = 1=3, the second one with p = 1=2, and thethird with probability 1. Thus this path is taken with probability 1=6.The expected number of steps En(x) from a vertex x to the lowest vertex satis�es therecursion En(x) = 1 + 1#fx0 : x! x0g Xx0:x!x0En(x0):If i(x) denotes the highest index i for which xi = 1, then we can easily showi(x) � En(x) � �i(x) + 12 � � �n+ 12 �:This implies the upper bound of Theorem 2, but only a linear lower bound. A completeanalysis seems to be surprisingly di�cult. In Section 3 we develop a method, based onlinear algebra over GF (2), that yields the nearly quadratic lower bounds \on average" ofTheorem 2.The random-facet pivot rule can, however, be completely analyzed on the Klee-Minty cubes. For this, one �rst derives thatFn(ei) = Fn(ei + ei�1) = i:6



In particular, started at the highest vertex en, the random-facet rule only needs anexpected number of Fn(en) = n steps. For an arbitrary starting vertex x 2 f0; 1gn, thesolution of the program restricted to a facet xi = 0 delivers the lowest vertex; restrictedto a facet xi = 1 the algorithm yields the vector ei + ei�1, where we set e0 = 0. Fromthis we get a recursion Fn(x) = 1n  nXi=1 ixi + nXi=1 Fn�1(x(i))! ;with x(i) := (x1; : : : ; xi�2; xi�1 + xi; xi+1; : : : ; xn)t 2 f0; 1gn�1 for 1 � i � n. Using thisrecursion, it is easy to derive a linear lower bound and a quadratic upper bound for Fn(x),namely i(x) � Fn(x) � i(x)2 + 3i(x)4 � n2 + 3n4 :Equality in the linear lower bound holds for the in�nite series of vectors ei and ei + ei�1.Surprisingly, one can explicitly solve the above recursion. In particular, quadratic lowerbounds as in Theorem 1 can be derived from the following result.Proposition 3. Started at a vertex x 2 f0; 1gn of the n-dimensional Klee-Minty cube,with ft : xt = 1g = fs1; s2; : : : ; skg; s1 < s2 < : : : < sk;the expected number of steps of the random-facet simplex algorithm isFn(x) = kXi=1 si + 2 X1�i<j�k (�1)j�isisj � si + 1 :To prove this, one can verify that the formula for Fn(x) does, indeed, satisfy therecursion. This, however, leads to very tedious computations and does not give extrainsight. The proof is therefore omitted here.For a random starting vertex, the situation is substantially simpler: LetGn = Xx2f0;1gn Fn(x):From the recursion we get Gn = 2n�2(n + 1) + 2Gn�1 with G1 = 1. This yields Gn =2n�2(�n+22 �� 1); and the second part of Theorem 1 follows.3 Bounds for random-edgeOur analysis of the random-edge rule on the Klee-Minty cubes starts with a coordinatetransformation in V := GF (2)n. Namely, we associate with every vertex x 2 V the labelTx := (xn; xn + xn�1; : : : ; xn+xn�1+: : :+x1)t 2 V:With these new labels, the vertex set of the digraph is again given by V. An arc of thedigraph now corresponds to vertices x; x0 2 V such that xi = 1 and x0 arises from x byreplacing xj by xj + 1(mod 2) for all j � i. (In particular, this yields x0i = 0.)Thus, for any vector x 2 V, we consider the game KM(x):7



Choose a random coordinate r for which xr = 1, and ip this coordinate togetherwith all coordinates of higher index. This operation is repeated until the zero vectoris reached.For example, the ipping sequence considered in Section 2 corresponds, after this coordi-nate transformation, to the sequence0@ 111 1A �! 0@ 110 1A �! 0@ 001 1A �! 0@ 000 1A :The version in which we prove the lower bound of Theorem 2 in this section is the following:starting with a random vector x 2 V, the expected number L(x) of rounds played is atleast cn2= logn for some constant c > 0.The ipping operation. The ip at index r (in the new coordinate system) can con-veniently be expressed as a linear transformation over V, i.e., there is a matrix A(r) suchthat xr := (x1; : : : ; xr�1; 0; xr+1 + xr; : : : ; xn + xr)t = A(r)xfor all vectors x = (x1; : : : ; xn):The columns of A(r) are the images of the unit vectors under the ip at r, i.e.
A(r) = 0BBBBBBBBB@

1 # column r. . . 1 0  row r1 1... . . .1 1
1CCCCCCCCCA ;

and all other entries are zero. Note that for j 6= r, ejr = ej; in general, a ip with xr = xis called void, and although KM(x) does not perform void ips, this more general ippingconcept is a key ingredient in our approach.Flip sequences. Let S be the set of all (formally in�nite) sequences (s1; s2; : : :) withelements in f1; : : : ; ng, where probS(sk = r) = 1=n independently for all k. We refer tothe members of S as ip sequences. For a ip sequence s and an integer k we let x(s;k) bethe result of `applying' the �rst k ips of s to x, i.e.,x(s;k) := A(s;k)x; with A(s;k) := A(sk) � � �A(s2)A(s1):The analysis of game KM. It is clear that one can simulate game KM by ippingwith a random r 2 f1; : : : ; ng in each step and ignoring the void ips. This means thatthe expected length L(x) of game KM(x) is just the expected number of nonvoid ips8



encountered during the simulation. Using the linearity of expectation, this boils down tothe following formula: L(x) =Xk�1 probS (x(s;k) 6= x(s;k�1)):Recalling that the expectation of a nonnegative, integer-valued random variable Xcan be written as Pk�0 prob(X > k), we see thatL�(x) :=Xk�0 probS (x(s;k) 6= 0)is just the expected length of the simulation, including the void ips | this will beimportant later. Let us refer to the simulation as game KM�.Recall that x(s;k) 6= x(s;k�1) if and only if the k-th ip hits a 1-entry of the current vectorx(s;k�1), which implies that the probability for a nonvoid k-th ip is just the expectednumber of 1-entries in x(s;k�1), divided by n. ThusprobS (x(s;k) 6= x(s;k�1)) = 1n nXr=1 probS (x(s;k�1)r = 1):Let L(n) := 12n Xx2V L(x)be the average expected length (over all vectors x) of game KM. We obtainL(n) = Xk�1 1n nXr=1 probS;V (x(s;k�1)r = 1)= 1n nXr=1Xk�1 probS;V ((A(s;k�1)x)r = 1)= 1n nXr=1Xk�1 probS;V ((ertA(s;k�1))x = 1)= 12n nXr=1Xk�1 probS (ertA(s;k�1) 6= 0);since probV((ertA(s;k�1))x = 1) is equal to 1=2 if ertA(s;k�1) 6= 0 (and 0 otherwise).In general, xtA(s;k�1) arises from x by playing k � 1 rounds of another ipping game:choose in each round a random index r and replace xr by Pr0>r xr0 = xr +Pr0�r xr0.But wait! This ipping game is nothing else than the simulation KM�, played in theoriginal combinatorial model of the previous section: if Pr0�r xr0 is odd, xr gets ipped,inducing a proper round of KM� | otherwise nothing happens, and a void ip occurs inthe simulation. (This correspondence is not a magic coincidence. See [10, Chapter 6] fora formal derivation in a more general setting.) Putting together this observation and theprevious derivation gives a simple relation between the average expected length L(n) ofgame KM and the expected length L� of game KM� for speci�c starting vectors.9



Lemma 4. L(n) = 12n nXr=1 L�(Ter);where T : x 7! (xn; xn + xn�1; : : : ; xn+xn�1+: : :+x1)t is the coordinate transformationrelating the two combinatorial models of the Klee-Minty cubes.Bounding L�. Lemma 4 leaves us with the problem of determining how many ips(void or nonvoid) are necessary on the average to reduce the vectorTer = (0; : : : ; 0; 1; : : : ; 1| {z }r )to 0. To this end we will analyze how the vector evolves when applying a random ipsequence to it. Actually, the analysis will only trace the dimension which records the1-entry with smallest index. Therefore, the considerations for Ter are valid as well forany other vector x with the same leftmost 1-entry.De�nition 5. For a nonzero vector x 2 V, the dimension of x is the numberd(x) := n + 1�minfr j xr = 1g:Furthermore, d(0) := 0:For example, d(Ter) = r. Now de�ne for 0 � d � n the numbersl(d) := minx2V fL�(x) j d(x) = dg:We get l(0) = 0 and L�(Ter) � l(r), and our objective will be to bound l(d) from below.To this end �x any vector x with dimension d > 0 and L�(x) = l(d), and apply a randomip sequence to it. Eventually the sequence will hit the leading 1-entry, thereby decreasingthe dimension of the vector currently under consideration. The expected number of ipsperformed until this happens is exactly n (we have a sequence of Bernoulli-trials withprobability of success equal to 1=n independently in every trial). The expected numberof ips performed after the dimension has decreased depends on the actual dimensionobtained. For i < d let pi denote the probability that the dimension goes down from dto i. Then l(d) � n + d�1Xi=0 pil(i): (1)Lemma 6. Let i < d. Then p0 + : : :+ pi � 1d� i :
10



Proof. The sum p0+ : : :+ pi is the probability that the dimension goes down by at leastd� i, and if this event is possible at all, the ip sequence must necessarily hit the leading1-entry before it hits any of the d � i � 1 next higher indices | otherwise there is a0-entry at the smallest such index which was hit, and this entry turns into one by thetime the leading position is ipped, preventing the dimension from advancing by morethan d � i � 1. However, the probability of hitting the leading 1-entry �rst is exactly1=(d� i).To proceed further, we need a simple fact.Lemma 7. l(d) is monotone increasing with d.Proof. As above, �x some vectorx = (0; : : : ; 0;| {z }n�d 1; xn�d+2; : : : ; xn)of dimension d > 0 with L�(x) = l(d) and consider the right-shifted vectorx0 = (0; : : : ; 0;| {z }n�d+1 1; xn�d+2; : : : ; xn�1)of dimension d � 1. We claim that L�(x) � L�(x0) holds which proves the lemma. Tosee this, consider the following bijection S $ S 0 between ip sequences. S = s1; s2; : : : ismapped to S 0 = s01; s02; : : : de�ned bys0k := 8<: sk; if sk = 1; : : : ; n� dsk + 1; if sk = n� d+ 1; : : : ; n� 1n� d+ 1; if sk = nNow, if playing the game with S reduces x to zero, then playing the game with S 0 reducesx0 to zero. Consequently, on the average over all S, the game on x does not end beforethe game on x0.From the monotonicity it follows that the right hand side of (1) is minimized if the tuple(pd�1; : : : ; p0) is lexicographically smallest subject to Pd�1i=0 pi = 1 and the inequalitiesestablished by Lemma 6. This is the case if pi = 1=(d � i) � 1=(d � i + 1) for i > 0,p0 = 1=d. Recalling that l(0) = 0, we getLemma 8. l(d) � n + d�1Xi=1 ( 1d� i � 1d� i + 1)l(i):Theorem 9. nXd=1 l(d) � n32(Hn+1 � 1) :
11



Proof. The inequality of Lemma 8 can be rewritten asdXi=1 l(i)d� i+ 1 � n+ d�1Xi=1 l(i)d� i ;and after setting f(d) :=Pdi=1 l(i)=(d� i+1) reads as f(d) � n+ f(d� 1) with f(0) = 0.This implies f(d) � dn for all d � n, sodXi=1 l(i)d� i+ 1 � dn:Summing up the inequalities for all values of d up to n gives�n+ 12 �n � nXd=1 dXi=1 l(i)d� i+ 1= nXi=1 l(i) nXd=i 1d� i+ 1= nXi=1 l(i)Hn�i+1: (2)While l(i) increases with i, Hn�i+1 decreases, and Chebyshev's \up-down" summationinequality [14, (2.34)] can be applied to yieldnXi=1 l(i)Hn�i+1 � 1n  nXi=1 l(i)! nXi=1 Hn�i+1!= 1n  nXi=1 l(i)! (n+ 1)(Hn+1 � 1): (3)Putting together (2) and (3) then givesn32 � (Hn+1 � 1) nXi=1 l(i);as claimed.Putting everything together. From Lemma 4 we know thatL(n) = 12n nXr=1 L�(Ter) � 12n nXr=1 l(r);and by Theorem 9 we can argue thatL(n) � 12n n32(Hn+1 � 1) = n24(Hn+1 � 1) ;12



which �nally implies Theorem 2.We remark that within a factor of 2, the bound of Theorem 9 is the best one candeduce from the recurrence of Lemma 8. Namely, starting with equality in Lemma 8, wearrive at nXd=1 l(d)n� d+ 1 = n2:This time both l(d) and 1=(n�d+1) increase with d, and Chebyshev's \up-up" summationinequality [14, (2.34)] givesn2 = nXd=1 l(d)n� d+ 1 � 1n  nXd=1 l(d)! nXd=1 1n� d+ 1! = 1n  nXd=1 l(d)!Hn:This implies nXd=1 l(d) � n3Hn :Thus, in order to beat the bound of Theorem 9 (and prove e.g. that Pnd=1 l(d) =
(n3)), one will have to keep track of more information than the dimension of vectorsduring the ipping process.An improved upper bound. We conclude this section by exhibiting an upper boundon En(x) that beats the bound of �n+12 � � 1=2 n2 established in Theorem 2 by a constantfactor. The aim is to show that the easy bound is not the truth, but we do not putemphasis on extracting the best possible factor.Let p2(x) be the probability that the leftmost one-entry of x gets ipped (equivalently,the dimension decreases) within two rounds of game KM(x), and de�nep2(d) := minx2V fp2(x) j d(x) = dg:Then the expected number of rounds played before the dimension decreases is boundedby 2=p2(d), and we get En(x) � nXd=1 2p2(d) ;for any start vector x. Let s be the number of one-entries in a �xed vector x withp2(x) = p2(d). Then we have the following lower bound on p2(d).p2(d) � 1s  1 + s�1Xi=1 1d� i! :To see this note that the �rst ip decreases the dimension with probability exactly 1=s;with the same probability, it hits the i-th one-entry from the right, for i = 1; : : : ; s � 1,and in this case, at least i zero-entries are generated by the ip. This means, for the13



subsequent second round, that the probability of decreasing the dimension is at least1=(d� i). We further computep2(d) � 1s  1 + d�1Xj=d�s+1 1j! � 1s �1 + Z dj=d�s+1 1xdx� = 1s �1 + ln dd� s+ 1� :After taking derivatives, we see that this expression is minimized ifdd� s+ 1 = ad;where ad is the solution of the equation2 + ln ad = d+ 1d ad:Using the value s� 2 IR de�ned by this givesp2(d) � 1s� �1 + ln dd� s� + 1� = add :For d ! 1, ad converges to the value a = 3:146 : : : satisfying 2 + ln a = a, so that weobtain the asymptotic resultEn(x) � nXd=1 2p2(d) � nXd=1 2dad � 2a nXd=1 d � :32 n2:Further massage along these lines improves the constant to :27, but since we do not expectto get the optimal bound that way, we won't elaborate on this.4 The average length of decreasing pathsThe random-edge and the random-facet algorithms both have (easy) quadratic up-per bounds on a Klee-Minty cube, that is, the expected length of the path chosen bysuch an algorithm is polynomially bounded. In sharp contrast to this the average lengthof a simplex path (from the highest to the lowest vertex) is exponentially large in thissituation, as we will establish in this section. This points to an important and strong im-balance in the way how randomized pivot rules select the paths they follow: most pathsare exponentially long, but with high probability the randomized pivot rules choose shortpaths. At least this is true on the Klee-Minty cubes. . .The length of a (decreasing) path from the highest vertex (0; : : : ; 0; 1)t to the low-est vertex (0; : : : ; 0)t in the n-dimensional Klee-Minty cube is always an odd integer.Let �(k; n) denote the number of all such paths of length 2k � 1. We have �(1; n) =�(2n�1; n) = 1 and for k < 1 or k > 2n�1 we set �(k; n) = 0. In order to estimate theaverage length of a decreasing path�n = 2n�1Xk=1 (2k � 1) � �(k; n). 2n�1Xk=1 �(k; n)(where all paths are taken with equal probability) we �rst prove the following recursion,for which we give a combinatorial (bijective) proof.14



Lemma 10. For n � 2 and all k 2 ZZ one has�(k; n) = Xj � k2j��(k � j; n� 1):Proof. In the 0=1-model that we derived in Section 2, consider any path from the maximalvertex (0; 0; : : : ; 0; 1)t to the minimal vertex (0; 0; : : : ; 0)t. This path contains exactly oneip in the last coordinate (this coordinate is 1 at the start, and 0 at the end), but aneven number of ips in every other coordinate (where we start and end with 0). Thus wehave an odd number 2k � 1 of ips in total, and an even number 2j of ips in the �rstcoordinate.From the rules of the game we see that if we just delete the �rst coordinates fromall vectors, then | if we ignore the void ips | we get a legal ip sequence, of length(2k � 1)� 2j, in the (n� 1)-dimensional binary Klee-Minty cube.When we try to insert the 2j 1-ips (i.e., ips of the �rst coordinate) into a givensequence of (2k � 1)� 2j ips for the (n � 1)-dimensional cube, then one always has tokeep an odd number of low-dimensional ips between two successive 1-ips.Our aim is to show that there are exactly � k2j� ways to do that, i.e., to derive a legalsequence of 2k � 1 ips in the n-dimensional cube from a legal sequence of 2k � 1 � 2jips for the (n� 1)-cube. For this write any sequence of ips for the n-dimensional cubeas a string of the form 1 � � � 1 � 1 � � � 1 � 1 � � � 1 � �where � represents an arbitrary ip not in the �rst coordinate. (In our example we havek = 9 and j = 3.) Every legal sequence of this form can be grouped in the form1 � � � 1 � 1 � � � 1 � 1 � � � 1 � �with 2j � 1 pairs of the form 1 � (i.e., a 1-ip followed by a di�erent ip), one singleton1-ip, and 12((2k � 1) � 2j � (2j � 1)) = k � 2j pairs � � corresponding to two \otherips." Thus we have to determine the positions of the 2j di�erent blocks involving 1among k blocks altogether: so there are � k2j� possibilities.Here is an alternative interpretation of the family of � k2j� paths counted in the previousproof. The question is to count the number of directed paths of length 2k � 1 from themaximal vertex s = (0; 0; : : : ; 0; 1)t to the minimal vertex t = (0; 0; : : : ; 0; 0)t in a \ladderdigraph" such as the one depicted in Figure 2, where the path along the top row wouldhave length 2(k � j) � 1, but we are actually counting paths of length 2k � 1, whichtherefore must use 2j of the vertical edges.One can prove an \explicit" formula for �(k; n),�(k; n) = Xd1;:::;dn�12INd1+���+dn�1=k�1 n�1Yi=1 �1 +Pn�1j=i dj2di �:by induction on n. However, that will not be used in the following.15



t = (0; 0; : : : ; 0; 0)t
(1; 0; : : : ; 0; 1)t

s = (0; 0; : : : ; 0; 1)t
(1; 0; : : : ; 0; 0)tFigure 2: The ladder digraph for k � 2j = 3.Theorem 11. For n � 2 one has(1 + 1=p5) � 2n�1 > �n > �1 + 1=p5�n�1 :Proof. By Lemma (10) we get for the number of all paths2n�1Xk=1 �(k; n) = 2n�1Xk=1 Xj � k2j��(k � j; n� 1) = 2n�2Xk=1 �(k; n� 1)Xj �k + j2j �:In the same way we �nd2n�1Xk=1 (2k � 1)�(k; n) = 2n�2Xk=1 �(k; n� 1)Xj (2(k + j)� 1)�k + j2j �:Let F (m) denote the m-th Fibonacci number, i.e., F (m) is de�ned by F (0) = F (1) = 1and F (m) = F (m� 1)+F (m� 2). One has F (m) =Pj�m �m�jj � [14, (6.130)] and hencePj �k+j2j � = F (2k). With G(k) :=Pj(2(k + j)� 1)�k+j2j � we write�n = 2n�2Xk=1 �(k; n� 1) �G(k). 2n�2Xk=1 �(k; n� 1) � F (2k): (4)So we obtain the upper bound�n � u(n) := maxfG(k)=F (2k) : 1 � k � 2n�2g: (5)In order to �nd a lower bound we observe that F (m) is a strictly increasing function of mand from this a simple calculation yields�n�1 = 2n�2Pk=1 (2k � 1) � �(k; n� 1)2n�2Pk=1 �(k; n� 1) < 2n�2Pk=1 (2k � 1) � �(k; n� 1) � F (2k)2n�2Pk=1 �(k; n� 1) � F (2k)This implies by (4)�n=�n�1 > l(n) := minfG(k)=((2k � 1) � F (2k)) : 1 � k � 2n�2g: (6)16



It remains to estimate the functions l(n) and u(n). For this we prove thatG(k) = 12k � 55 F (2k) + 4k + 25 F (2k � 1);this is equivalent tokXj=0 5j�k + j2j � = k F (2k) + (2k + 1)F (2k � 1);which can be veri�ed by induction on k. Using the identity F (k+1)F (k� 1)� F (k)2 =(�1)k+1 we see that F (2k � 1)=F (2k) is a strictly increasing function of k, with limit(�1 +p5)=2. Thus G(k)=F (2k) is increasing and with (5) we get�n � u(n) = G(2n�2)F (2n�1) < (1 + 1=p5) � 2n�1:Now, it is not hard to verify that G(k)=((2k� 1) �F (2k)) is a strictly decreasing functionand thus l(n) > limk!1 G(k)(2k � 1)F (2k) = 65 + 25 limk!1 F (2k � 1)F (2k) = 1 + 1=p5;which with (6) shows the lower boundIn view of the following table it seems likely that �n > 2n�1. Using generating functiontechniques, Bousquet-M�elou has now been able to prove the existence of a constant C > 0such that �n � C2n [5].n 2 3 4 5 6 7 8 9 10 11 12 13�n2n�1 1 1.036 1.075 1.085 1.0875 1.0887 1.0893 1.0896 1.08981 1.08988 1.08992 1.089945 Related ModelsIn this �nal section, we provide two more combinatorial models for classes of linear pro-grams with exponentially long decreasing paths. A main feature of these two classes |as compared to the Klee-Minty cubes | is that they include polytopes with arbitrarilylarge number of facets in any �xed dimension. In both classes, we can prove quadraticupper bounds for the running time of random-edge with arbitrary starting vertex.Deformed products. This class of linear programs was also constructed by Klee& Minty [22]. Its polytopes are combinatorially equivalent to products of 1- and 2-dimensional polytopes. For the following, we restrict to the special case where the dimen-sion n is even, and P := (Ck)n=2 is a product of k-gons: an n-dimensional polytope withm = kn2 facets. Such polytopes are now realized in IRn (\deformed") in such a way that17



they have an xn-decreasing path through all the vertices. The tricky geometric construc-tion of these programs [22] was simpli�ed in [1]; the combinatorial model is very simple,as follows.The vertex set of P can naturally be identi�ed with the set of vectors f1; : : : ; kgn=2.Two vertices are adjacent if their vectors x; x0 2 f1; : : : ; kgn=2 di�er in a single coordinate,and in this coordinate the di�erence is either 1 or k�1. The directions of these edges aregiven as follows: if x and x0 di�er in their i-th coordinate, then we get a directed edgex0 ! x if either� x0i > xi and (xi+1; : : : ; xn=2) contains an even number of even entries, or� x0i < xi and (xi+1; : : : ; xn=2) contains an odd number of even entries.This explicitly describes an acyclic digraph. The underlying graph is a product of cy-cles. It is oriented in a special way such that we get an acyclic digraph that hasa (unique) Hamiltonian path that leads from the source (\maximal vertex") which iss = (k; k; : : : ; k; k) if k is odd and s = (1; 1; : : : ; 1; k) if k is even, to the sink (\minimalvertex") that is t = (1; 1; : : : ; 1; 1) in all cases. Our drawing shows this graph for n = 4,k = 3, where we have33 �! 23 �! 13 �! 12 �! 22 �! 32 �! 31 �! 21 �! 11as the directed path through all the vertices.On this digraph pivoting algorithms such as random-edge take a random walk thatwill neccessarily end at the sink t. 1312 222321 3231
33 = s

t = 11Figure 3: The direct product network for n = 4, k = 3Proposition 12. On a deformed product program with kn=2 vertices and m = kn=2facets, where k � 3, the expected number of steps taken by the random-edge algorithm,when starting at x 2 f1; 2; : : : ; kgn=2, is bounded by a quadratic function,E(x) � En;m := (k � 1)2n24 < nm2 :
18



Proof. Using induction (on the distance from the sink along the directed Hamilton path)we prove that E(x) � En�2;m + (l � 1)(n� 1) for xn=2 = l: (7)This is true if n = 2 (with E0;m := 0). Thus we may apply induction on n for the casel = 1. We use the notation �(x) := #fx0 : x ! x0g. For 1 < l < k, every vertex x hasexactly one \lower" neighbor x0 with x0n=2 < xn=2, and �(x)� 1 � n� 2 neighbors x0  x\at the same level" (i.e., x0n=2 = l). Thus we getE(x) � 1 + 1�(x)��(x)En�2;m + (�(x)� 1)(l � 1)(n� 1) + (l � 2)(n� 1)�= En�2;m + (l � 1)(n� 1) + 1� n� 1�(x)� En�2;m + (l � 1)(n� 1):Similarly, for l = k we see that x has one lower neighbor x0 with x0n=2 = 1, one suchneighbor x00 with x00n=2 = k � 1, and �(x) � 2 � n � 2 neighbors with last coordinate k,and thus we getE(x) � 1 + 1�(x)��(x)En�2;m + (�(x)� 2)(k � 1)(n� 1) + (k � 2)(n� 1)�= En�2;m + (k � 1)(n� 1) + 1� k(n� 1)�(x)� En�2;m + (k � 1)(n� 1):Iterating the inequality (7) we obtainE(x) � (k � 1)(1 + 3 + : : :+ (n�1)) = (k � 1)�n2�2:The function En;m(x) is, however, not even completely analyzed for the case n = 4.For the deformed products, there is always a (unique, decreasing) shortest path fromthe highest to the lowest vertex: it visits only these two vertices if k is odd, while it usesn2 + 1 vertices if k is even. In contrast to this very short path, the longest decreasingpath visits all the kn=2 = (2mn )n=2 vertices. In constant dimension this yields a longestdecreasing path of length O(mn=2), which is asymptotically sharp. However, for otherinteresting parameter settings, like m = 2n, there might be substantially longer paths |see the following construction.Cyclic programs. Here the construction starts with the polars Cn(m)� of cyclic poly-topes [15] [34]. These simple polytopes have the maximal number of vertices for given mand n, namely V (n;m) = �m� dn2 ebn2 c �+ �m� 1� dn�12 ebn�12 c �;according to McMullen's upper bound theorem [26] [34]. The facets of Cn(m)� are iden-ti�ed with [m] := f1; 2; : : : ; mg; the vertices correspond to those n-subsets F � [m] which19



satisfy \Gale's evenness condition": if i; k 2 [m]nF , then the set fj 2 F : i < j < kg haseven cardinality.Now any two ordered sets F = fi1; i2; : : : ; ing< and G = fj1; j2; : : : ; jng< satisfyingGale's evenness condition are compared by the following twisted lexicographic order: F <G if and only if i1 < j1,or i1 = j1, . . . , ik = jk, ik+1 < jk+1, and ik is even,or i1 = j1, . . . , ik = jk, ik+1 > jk+1, and ik is odd.Thus one compares the �rst element in which the (sorted) sets F and G di�er, andtakes the natural order if the element before is even (or doesn't exist), and the reversedorder if the element before is odd. For example, for C4(8)� we get the ordering1678 < 1568 < 1458 < 1348 < 1238 < 1234 < 1245 < 1256 < 1267 < 1278 < 2378 <2367 < 2356 < 2345 < 3456 < 3467 < 3478 < 4578 < 4567 < 5678.Now we use this ordering to construct the digraph model. Its vertices are the setssatisfying Gale's evenness condition. There is a directed edge F ! F 0 if and only if F 0 < Fand F; F 0 di�er in exactly one element, that is, the corresponding vertices of Cn(m)� areadjacent.The special property of the ordering is that every vertex is adjacent to the previousone. Thus the digraph is acyclic with unique source and sink, and with a directed paththrough all the vertices. (The construction is derived from Klee [19], where the order isconstructed and described recursively.)In general one cannot realize the polytope Cn(m)� such that the xn-coordinate ordersthe vertices according to twisted lexicographic order. (Equivalently, in general this orderdoes not correspond to a Bruggesser-Mani shelling [7] [34] of some realization of thecyclic polytope. In fact, Carl Lee has observed that for n = 7 and m = 10 the twistedlexicographic order is not a shelling order.) Thus the following \upper bound problem forlinear programs" is open:\What is the largest possible number P (n;m) of vertices on a decreasing path in alinear program of dimension n with m facets?"In other words, it is not clear whether the bound P (n;m) � V (m;n), from the upperbound theorem for polytopes, holds with equality.Even without such a realization, the twisted lexicographic ordering yields an interest-ing acyclic orientation of the graph of the polar cyclic polytope Cn(m)�. This digraphmodel may be a very reasonable \worst case" (?) scenario for the performance of random-ized simplex algorithms. Both the random-edge and the random-facet variants can,indeed, be analyzed in terms of this digraph model, without use of a metric realization.Proposition 13. For the random-edge rule, started at an arbitrary vertex F ofthe cyclic program, there is a linear lower bound and a quadratic upper bound for theexpected number of steps. For this, we set `(F ) := m+ 1�min(F ), with n � `(F ) � m,and obtain `(F )� n � En;m(x) � �`(F ) + 12 �� �n+ 12 �:(The proof for this result is similar to that of Proposition 12, and thus omitted.)20
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